RELATIONSHIP BETWEEN METABOLIC SYNDROME AND PARKINSON DISEASE PRODROMAL SYMPTOMS

Autores

  • Ana Patrícia da Silva Souza Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco
  • Mariluce Rodrigues Marques Silva Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco
  • Ana Beatriz Januário da Silva Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco
  • Karollainy Gomes da Silva Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco
  • Matheus Santos de Sousa Fernandes Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco
  • Sandra Lopes de Souza Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco
  • Viviane de Oliveira Nogueira Souza Núcleo de Nutrição, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco
  • Paulo Roberto Leite de Arruda Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário FACOL - UNIFACOL
  • Taciane Silva do Carmo Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário FACOL - UNIFACOL
  • Maria Eduarda Rodrigues Alves dos Santos Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário FACOL - UNIFACOL
  • Roberta Karlize Pereira Silva Mayara Luclécia da Silva Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário FACOL - UNIFACOL
  • José Maurício Lucas da Silva Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário FACOL - UNIFACOL
  • Mayara Luclécia da Silva Centro Integrado de Tecnologias em Neurociência (CITENC), Centro Universitário FACOL - UNIFACOL
  • Waleska Maria Almeida Barros Programa de Pós-graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Saúde, Universidade Federal de Pernambuco

DOI:

https://doi.org/10.5281/zenodo.16009097

Palavras-chave:

Síndrome metabólica, Doença de Parkinson, Sintomas prodrômicos, Sonolência diurna, Depressão

Resumo

There is evidence that mechanisms involved in the systemic metabolic dysfunction that occur in Metabolic Syndrome (MS) and obesity, such as oxidative stress, inflammation caused by inadequate protein deposition, and changes in lipid pathways, have common elements with Parkinson's Disease (PD). The objective of this study was to investigate the frequency of MS in adult patients at basic health units in the city of Vitória de Santo Antão-PE, and relate it to possible symptoms experienced in the prodromal period of This is a cross-sectional study, in which sociodemographic and blood data were collected to analyze the serum levels of fasting glucose, triglycerides, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol. The Epworth Sleepiness Scale, Patient Health Questionnaire-9, and the Montreal Cognitive Assessment were applied. In addition to performing anthropometry and measuring systemic blood pressure. A total of 179 individuals were evaluated, 78.8% female, with a mean age of 49.64 (±6.0) years. For the allocation of groups with and without MS, a sample of 89 volunteers with a mean age of 48.6 years (±5.8) was obtained, among which 71.7% were obese. The frequency of MS among those evaluated was 51.7% and there was a relationship between its components and prodromal symptoms of PD, such as excessive daytime sleepiness and mild cognitive impairment, both in individuals with MS and in those without the syndrome.

Referências

[1] Lee SE, Han K, Kang YM, Kim SO, Cho YK, Ko KS, et al. Trends in the prevalence of metabolic syndrome and its components in South Korea: Findings from the Korean National Health Insurance Service Database (2009–2013). PLoS One 2018;13. https://doi.org/10.1371/journal.pone.0194490.

[2] Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: Prevalence in worldwide populations. Endocrinol Metab Clin North Am 2004;33:351–75.

https://doi.org/10.1016/j.ecl.2004.03.005.

[3] Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 2017;11:215–25. https://doi.org/10.1177/1753944717711379.

[4] Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Ann. N. Y. Acad. Sci., vol. 893, New York Academy of Sciences; 1999, p. 154–75. https://doi.org/10.1111/j.1749-6632.1999.tb07824.x.

[5] Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013;136:2419–31. https://doi.org/10.1093/brain/awt192.

[6] Perl DP, Olanow CW, Calne D. Alzheimer’s disease and Parkinson’s disease: Distinct entities or extremes of a spectrum of neurodegeneration? Ann. Neurol., vol. 44, Lippincott Williams and Wilkins; 1998. https://doi.org/10.1002/ana.410440705.

[7] Nam GE, Kim SM, Han K, Kim NH, Chung HS, Kim JW, et al. Metabolic syndrome and risk of Parkinson disease: A nationwide cohort study. PLoS Med 2018;15. https://doi.org/10.1371/journal.pmed.1002640.

[8] Roh JH, Lee S, Yoon JH. Metabolic Syndrome and Parkinson’s Disease Incidence: A Nationwide Study Using Propensity Score Matching. Metab Syndr Relat Disord 2021;19:1–7. https://doi.org/10.1089/met.2020.0060.

[9] Souza AP da S, Barros WMA, Silva JML, Silva MRM, Silva ABJ, Fernandes

MS de S, et al. Effect of Metabolic Syndrome on Parkinson’s Disease: A

Systematic Review. Clinics 2021;76. https://doi.org/10.6061/CLINICS/2021/E3379.

[10] Mantri S, Morley JF, Siderowf AD. The importance of preclinical diagnostics in Parkinson disease. Park Relat Disord 2019;64:20–8. https://doi.org/10.1016/j.parkreldis.2018.09.011.

[11] Weintraub D, Tröster AI, Marras C, Stebbins G. Initial cognitive changes in Parkinson’s disease. Mov Disord 2018;33:511–9. https://doi.org/10.1002/mds.27330.

[12] Rees RN, Noyce AJ, Schrag A. The prodromes of Parkinson’s disease. Eur J Neurosci 2019;49:320–7. https://doi.org/10.1111/ejn.14269.

[13] Artzi M, Even-Sapir E, Shacham HL, Thaler A, Urterger AO, Bressman S, et al. DaT-SPECT assessment depicts Dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers. PLoS One 2017;12. https://doi.org/10.1371/journal.pone.0175424.

[14] Tessitore A, Cirillo M, De Micco R. Functional Connectivity Signatures of Parkinson’s Disease. J Parkinsons Dis 2019;9:637–52. https://doi.org/10.3233/JPD-191592.

[15] Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci 2017;18:435–50. https://doi.org/10.1038/nrn.2017.62.

[16] Fereshtehnejad SM, Yao C, Pelletier A, Montplaisir JY, Gagnon JF, Postuma RB. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: A prospective study. Brain 2019;142:2051–67. https://doi.org/10.1093/brain/awz111.

[17] Salum KCR, de Souza GO, Abreu G de M, Campos Junior M, Kohlrausch FB, Carneiro JRI, et al. Identification of a Rare and Potential Pathogenic MC4R Variant in a Brazilian Patient With Adulthood-Onset Severe Obesity. Front Genet 2020;11. https://doi.org/10.3389/fgene.2020.608840.

[18] Bertolazi AN, Fagondes SC, Hoff LS, Pedro VD, Barreto SSM, Johns MW. Portuguese-language version of the epworth sleepiness scale: Validation for use in Brazil. J Bras Pneumol 2009;35:877–83. https://doi.org/10.1590/s180637132009000900009.

[19] Santos IS, Tavares BF, Munhoz TN, de Almeida LSP, da Silva NTB, Tams BD, et al. Sensibilidade e especificidade do Patient Health Questionnaire-9 (PHQ-9) entre adultos da população geral. Cad Saude Publica 2013;29:1533–43. https://doi.org/10.1590/0102-311X00144612.

[20] Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

[21] Memõria CM, Yassuda MS, Nakano EY, Forlenza O V. Brief screening for mild cognitive impairment: Validation of the Brazilian version of the Montreal cognitive assessment. Int J Geriatr Psychiatry 2013;28:34–40. https://doi.org/10.1002/gps.3787.

[22] Pinto TCC, Santos MSP, Machado L, Bulgacov TM, Rodrigues-Junior AL, Silva GA, et al. Optimal Cutoff Scores for Dementia and Mild Cognitive Impairment in the Brazilian Version of the Montreal Cognitive Assessment among the Elderly. Dement Geriatr Cogn Dis Extra 2019;9:44–52. https://doi.org/10.1159/000495562.

[23] Kandiah N, Zhang A, Cenina AR, Au WL, Nadkarni N, Tan LC. Montreal Cognitive Assessment for the screening and prediction of cognitive decline in early Parkinson’s disease. Park Relat Disord 2014;20:1145–8. https://doi.org/10.1016/j.parkreldis.2014.08.002.

[24] Schrag A, Siddiqui UF, Anastasiou Z, Weintraub D, Schott JM. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: a cohort study. Lancet Neurol 2017;16:66. https://doi.org/10.1016/S1474-4422(16)30328-3.

[25] Gouveia ÉR, Gouveia BR, Marques A, Peralta M, França C, Lima A, et al. Predictors of Metabolic Syndrome in Adults and Older Adults from Amazonas, Brazil. Int J Environ Res Public Health 2021;18:1–11. https://doi.org/10.3390/IJERPH18031303.

[26] Cissé K, Samadoulougou DRS, Bognini JD, Kangoye TD, KirakoyaSamadoulougou F. Using the first nationwide survey on non-communicable disease risk factors and different definitions to evaluate the prevalence of metabolic syndrome in Burkina Faso. PLoS One 2021;16. https://doi.org/10.1371/JOURNAL.PONE.0255575.

[27] Chen M-S, Chiu C-H, Chen S-H. Risk assessment of metabolic syndrome prevalence involving sedentary occupations and socioeconomic status. BMJ Open 2021;11:e042802. https://doi.org/10.1136/BMJOPEN-2020-042802.

[28] Do Carmo Silva-Júnior A, Cruz DP, Vitório De Souza Junior E, Souza Rosa R, Missias Moreira R, Santana Cardoso Santos I. [Repercussions of the prevalence of metabolic syndrome on adults and elderly people in the context of primary health care]. Rev Salud Publica (Bogota) 2020;20:742–7. https://doi.org/10.15446/RSAP.V20N6.65564.

[29] Haverinen E, Paalanen L, Palmieri L, Padron-Monedero A, Noguer-Zambrano I, Sarmiento Suárez R, et al. Comparison of metabolic syndrome prevalence using four different definitions - a population-based study in Finland. Arch Public Health 2021;79:231. https://doi.org/10.1186/S13690-021-00749-3.

[30] Oliveira LVA, Dos Santos BNS, Machado ÍE, Malta DC, Velasquez-Melendez G, Felisbino-Mendes MS. Prevalence of the metabolic syndrome and its components in the Brazilian adult population. Cienc e Saude Coletiva

2020;25:4269–80. https://doi.org/10.1590/1413-812320202511.31202020.

[31] de Fátima Haueisen Sander Diniz M, Beleigoli AMR, Schmidt MI, Duncan BB, Ribeiro ALP, Vidigal PG, et al. Homeostasis model assessment of insulin resistance (HOMA-IR) and metabolic syndrome at baseline of a multicentric Brazilian cohort: ELSA-Brasil study. Cad Saude Publica 2020;36. https://doi.org/10.1590/0102-311X00072120.

[32] GE N, SM K, K H, NH K, HS C, JW K, et al. Metabolic syndrome and risk of Parkinson disease: A nationwide cohort study. PLoS Med 2018;15. https://doi.org/10.1371/JOURNAL.PMED.1002640.

[33] Yang X, Xiao Y, Han B, Lin K, Niu X, Chen X. Implication of mixed sleep apnea events in adult patients with obstructive sleep apnea-hypopnea syndrome. Sleep Breath 2019;23:559–65. https://doi.org/10.1007/S11325-018-1745-0.

[34] Shayestefar M, Sadeghniiat Haghighi K, Jahanfar S, Delvarianzadeh M, Nematzadeh F, Ebrahimi MH. Assessment of the relationship between metabolic syndrome and obstructive sleep apnea in male drivers of Shahroud city in 2018: a cross sectional study. BMC Public Health 2019;19. https://doi.org/10.1186/S12889-019-7361-5.

[35] Al-Rashed F, Sindhu S, Madhoun A Al, Alghaith A, Azim R, Al-Mulla F, et al. Short Sleep Duration and Its Association with Obesity and Other Metabolic Risk Factors in Kuwaiti Urban Adults. Nat Sci Sleep 2021;13:1225–41. https://doi.org/10.2147/NSS.S311415.

[36] Ou YN, Tan CC, Shen XN, Xu W, Hou XH, Dong Q, et al. Blood Pressure and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-

Analysis of 209 Prospective Studies. Hypertens (Dallas, Tex 1979)

2020;76:217–25. https://doi.org/10.1161/HYPERTENSIONAHA.120.14993.

[37] Dickerson BC, Fenstermacher E, Salat DH, Wolk DA, Maguire RP, Desikan R, et al. Detection of cortical thickness correlates of cognitive performance: Reliability across MRI scan sessions, scanners, and field strengths. Neuroimage 2008;39:10–8. https://doi.org/10.1016/J.NEUROIMAGE.2007.08.042.

[38] Li W, Yue L, Xiao S. Increase in Right Temporal Cortex Thickness Is Related to Decline of Overall Cognitive Function in Patients With Hypertension. Front Cardiovasc Med 2021;8. https://doi.org/10.3389/FCVM.2021.758787.

[39] Hughes D, Judge C, Murphy R, Loughlin E, Costello M, Whiteley W, et al.

Association of Blood Pressure Lowering With Incident Dementia or Cognitive Impairment: A Systematic Review and Meta-analysis. JAMA 2020;323:1934– 44. https://doi.org/10.1001/JAMA.2020.4249.

[40] Xia S-S, Xia W-L, Huang J-J, Zou H-J, Tao J, Yang Y. The factors contributing to cognitive dysfunction in type 2 diabetic patients. Ann Transl Med 2020;8:104–104. https://doi.org/10.21037/ATM.2019.12.113.

[41] de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer’s Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2018;38. https://doi.org/10.1002/MED.21440.

[42] Li W, Yue L, Sun L, Xiao S. Elevated Fasting Plasma Glucose Is Associated With an Increased Risk of MCI: A Community-Based Cross-Sectional Study.

Front Endocrinol (Lausanne) 2021;12. https://doi.org/10.3389/FENDO.2021.739257.

[43] Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee

of the American Academy of Neurology. Neurology 2018;90:126–35. https://doi.org/10.1212/WNL.0000000000004826.

[44] Mone P, Gambardella J, Pansini A, de Donato A, Martinelli G, Boccalone E, et al. Cognitive Impairment in Frail Hypertensive Elderly Patients: Role of Hyperglycemia. Cells 2021;10. https://doi.org/10.3390/CELLS10082115.

[45] Bougea A, Maraki MI, Yannakoulia M, Stamelou M, Xiromerisiou G, Kosmidis MH, et al. Higher probability of prodromal Parkinson disease is related to lower cognitive performance. Neurology 2019;92:E2261–72.

https://doi.org/10.1212/WNL.0000000000007453.

[46] Foubert-Samier A, Helmer C, Le Goff M, Guillet F, Proust-Lima C, JacqminGadda H, et al. Cognitive and functional changes in prediagnostic phase of Parkinson disease: A population-based study. Park Relat Disord 2020;79:40–6. https://doi.org/10.1016/j.parkreldis.2020.08.022.

.

Downloads

Publicado

2025-08-01

Como Citar

Souza , A. P. da S., Silva, M. R. M., Silva, A. B. J. da, Silva, K. G. da, Fernandes, M. S. de S., Souza, S. L. de, … Barros, W. M. A. (2025). RELATIONSHIP BETWEEN METABOLIC SYNDROME AND PARKINSON DISEASE PRODROMAL SYMPTOMS . GESTUS MULTIDISCIPLINAR, 1(1), 28–38. https://doi.org/10.5281/zenodo.16009097

Edição

Seção

Artigos Científico